ACC(异常相关系数,距平相关系数,Anomaly Correlation Coefficient)

文章介绍了异常相关系数(ACC)作为评估预报系统质量的方法,通过计算预报与观测的异常相关性。它考虑了季节变化和气候平均值的影响,数值越高表示预报技巧越好。例如,ACC=0.8表示大尺度天气模式中有技巧,而ACC=0.5意味着预报误差等于气候平均值的误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ACC

原始文章:https://confluence.ecmwf.int/display/FUG/Section+12.A+Statistical+Concepts+-+Deterministic+Data#Section12.AStatisticalConceptsDeterministicData-MeasureofSkill-theAnomalyCorrelationCoefficient(ACC)

通过计算预报与观测之间的相关性,来衡量预报系统质量。

由于季节变化,直接将预报与观测或分析相关联可能会给出误导性的高值。因此,通常的做法是从预报和验证中减去气候平均值,并根据异常相关系数(ACC)来验证预报和观测的异常。ACC最简单的形式可以写成:

A C C = ( f − c ) ( a − c ) ‾ ( f − c ) ‾ 2 ( a − c ) ‾ 2 ACC=\frac{\overline{(f-c)(a-c)}}{\sqrt{\overline{(f-c)}^2\overline{(a-c)}^2}} ACC=(fc)2(ac)2 (fc)(ac)

式中: f f f 为预测值, a a a 为观测值, c c c 为气候值。因此 ( f − c ) (f-c) (fc) 为预测值相对于气候值的异常, ( a − c ) (a-c) (ac) 为观测值相对于气候值的异常。 ( f − c ) 2 (f - c)^2 (fc)2 ( a − c ) 2 (a - c)^2 (ac)2 分别为气候预报异常和分析异常的平方标准差;它们是预测和分析中“活动”的度量。上横条表示区域或全球平均值。

WMO的定义还考虑到任何平均误差:

A C C = [ ( f − c ) − ( f − c ) ‾ ] [ ( a − c ) − ( a − c ) ‾ ] ‾ [ ( f − c ) − ( f − c ) ‾ ] 2 ‾ [ ( a − c ) − ( a − c ) ‾ ] 2 ‾ ACC=\frac{\overline{[(f-c)-\overline{(f-c)}][(a-c)-\overline{(a-c)}]}}{\sqrt{\overline{[(f-c)-\overline{(f-c)}]^2}\overline{[(a-c)-\overline{(a-c)}]^2}}} ACC=[(fc)(fc)]2[(ac)(ac)]2 [(fc)(fc)][(ac)(ac)]

异常相关系数(ACC)可以看作是与气候相关的预报得分。数值的增加表明“成功”的增加。经验表明:

ACC ~ 0.8 对应于在大尺度天气模式中存在天气技巧的范围。
ACC = 0.6 对应于在最大尺度天气模式中存在天气技巧的范围。
ACC = 0.5 表示预报的误差与基于气候平均值的预报的误差相同(即RMSE = Aa,即用作预报的气候天气资料的精度)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值