【论文分享】深度异常检测综述(Deep Learning for Anomaly Detection: A Review)-中

本文综述了深度异常检测的三个方面:特征提取、正常性特征学习和端到端异常得分学习。重点讨论了各种深度学习模型如自动编码器(AE)、生成对抗网络(GAN)在异常检测中的应用,强调了这些方法的优缺点及挑战,如AE的重建误差作为异常指标、GAN的隐空间表示和对抗性学习在单类分类中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上一次的论文分享中👉https://blog.csdn.net/qq_39328436/article/details/118582785我们介绍了深度异常检测以及其复杂性与挑战。在这个一次的论文分享中,我要介绍“深度异常检测”的几个类别,也可以说是几个重点的研究方向。一共涉及三个大类以及11个小类,本次会对这11个类别展开介绍,重点介绍特征,原理,研究路线,优点,缺点,以及他们所应对的挑战。需要提前说明的是,本次并不对每个方法的进行详细的逻辑推导和证明(毕竟是综述性质的论文,主要的目的还是从整体上了解这个领域)

目录

分类总览

1.Deep learning for feature extraction

Characteristic:

Assumption:

Research line:

Advantages:

Disadvantages:

Challenges:

Models

2.Learning features representations of normality

Characteristic:

2.1 Generic Normality Feature Learning:

 Characteristic:

2.1.1 Autoencoder(AE)

2.1.2 Generative Adversarial Networks(GAN)

2.1.3 Predictability Modeling

2.1.4 Self-supervised Classification

2.2 Anomaly Measure-dependent Feature Learning

Characteristic

2.2.1 Distance-based Measure

2.2.2 One-class Classification-based Measure

2.2.3 Clustering-based Measure

3.End-to-end Anomaly Score Learning

Characteristic

3.1 Ranking Models

3.2 Prior-driven Models

3.3 Softmax Likelihood Models

3.4

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

vector<>

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值