在上一次的论文分享中👉https://blog.csdn.net/qq_39328436/article/details/118582785我们介绍了深度异常检测以及其复杂性与挑战。在这个一次的论文分享中,我要介绍“深度异常检测”的几个类别,也可以说是几个重点的研究方向。一共涉及三个大类以及11个小类,本次会对这11个类别展开介绍,重点介绍特征,原理,研究路线,优点,缺点,以及他们所应对的挑战。需要提前说明的是,本次并不对每个方法的进行详细的逻辑推导和证明(毕竟是综述性质的论文,主要的目的还是从整体上了解这个领域)
![]()
目录
1.Deep learning for feature extraction
2.Learning features representations of normality
2.1 Generic Normality Feature Learning:
2.1.2 Generative Adversarial Networks(GAN)
2.1.4 Self-supervised Classification
2.2 Anomaly Measure-dependent Feature Learning
2.2.2 One-class Classification-based Measure
2.2.3 Clustering-based Measure
【论文分享】深度异常检测综述(Deep Learning for Anomaly Detection: A Review)-中
于 2021-08-24 11:26:57 首次发布