群是近世代数的一个重要研究内容,在密码学中,特别是在公钥密码学中,群有着非常重要的作用。
群的概念
设G是一个非空集合,在G上定义了一个二元运算,若满足下面的条件,则称(G,)为一个群。
(1)结合律。对于任意的a,b,cG,有。
(2)单位元。在G中存在一个元素e,它对G中的任意元素g,有。
(3)逆元。对G中任意元素g都存在G中的一个元素,有。
如果一个群的元素个数是一个有限整数,称这个群为有限群,群元素的个数为这个群的阶,否则称这个群为无限群。
阿贝尔群(Abel):一个群,对于任意的a,bG,都有,则称这个群为交换群,也称Abel群。
循环群:若一个群G的每一个元素都是某一个固定元素a的方幂,即G=,则称这个群为循环群,称a为G的生成元。
循环群的子群仍然为循环群。