离散数学复习——代数部分

目录

简述

一.二元运算及其性质

1.1结合律

1.2结合律

1.3幂等律

1.4分配律

1.5吸收律

二.特殊元

2.1幺元(单位元)

1.公式

2.运算表

2.2零元

1.公式

2.运算表

2.3逆元

1.公式

2.运算表

例题

​​​​​​​总结

三.群

四.阿贝尔群和循环群 

1. 阿贝尔群

2.循环群


简述

  • 选择10/20
  • 填空6/12
  • 大题7/(4/8,3/12)

不会有直接概念的题,主要是理解和运用

关注:是什么,怎么求

代数系统10分
其余部分3/30
一.数理逻辑:
数理逻辑证明,前束范式,主析取范式,主合取范式,符号化命题,一二章推理证明

二. 集合论:
关系的性质,关系的三中表示方法,闭包运算,等价关系的定义,哈斯图,相容关系图,集合的运算,划分与覆盖的定义(参考上课老师画的图),函数的分类,复合函数,逆函数

三. 代数系统:
幺元,逆元,零元,群的定义以及证明

四.图论:
邻接矩阵,矩阵的计算及含义,完全图,补图,平面图的相关概念,欧拉图,最小生成树,最优二叉树

本节为第三部分——代数部分

一.二元运算及其性质

1.1结合律

  设<A, *>是二元代数系统,如果对任意的a, b, c∈A,都有

                       (a*b) *ca* (b*c)

则称*”A上是可结合的,或称满足结合律

1.2结合律

  设<A, *>是二元代数系统,如果对任意的a, b∈A,都有

                           a * bb * a

则称*A上是可交换的,或称满足交换律。

1.3幂等律

  设<A, *>是二元代数系统,若元素a∈A,满足

                              a*a = a

则称aA中关于*的一个幂等元,简称a幂等元。若A中的每一个元素都是幂等元,则称*A中是幂等的,或称*满足幂等律

1.4分配律

*о是集合A上的二元运算,<A, *, о >是一个代数系统, 对"a,b,cÎA,有

           (1aо(b*c)=(aоb)*(aоc)

           (2) (b*c) оa=(bоa)*(cоa)

则称о*A上满足分配律

1.5吸收律

设“*”、“о”是集合A上的二元运算,

  <A, *, о >是一个代数系统,如果对任意的x,  y∈A,都有

               x * (x о y) = x,

               x о(x * y) = x,

则称“*”和“о”满足吸收律

二.特殊元

2.1幺元(单位元)

确定幺元:

1.公式

        e * x = x * e = x

        左右幺元相等时为幺元

2.运算表

        通过表来看:

              所在的行包含所有元素(左幺元),所在的列包含所有的元素(右幺元)。

59259d163bd74d79a1f838fae120d36f.png

可以知道a是幺元

2.2零元

1.公式

   θ * a = a * θ = θ

  左右零元相等

2.运算表

   通过运算表来看:

6e0d5cbf6547496fafa53bf443286b4d.png

7db66d5626694c49ad23afc9e8e9c761.png

2.3逆元

1.公式

  b * a = a * b = e

    b = a^(-1)

2.运算表

步骤1 :先找到该运算的幺元

步骤2 :通过表来看零元

​​​​​​​

 

找到幺元为: b

 ​​​​​​​

 找到逆元:

a的逆元为c;

b的逆元为b;

c的逆元为a;

例题

473901b919fc4b87acd4a748fd2ccd9c.jpg

总结

三.群

  • 广群:封闭性

 封闭性:对于一个数集,如果其中任意两个数在进行一种运算后,结果仍在这个数集中,那么我们说这个数集对于这种运算是封闭的

  • 半群:封闭性,结合性
  • 子半群:

  •  含幺半群 (独异点):

       含有幺元的半群

       独异点的运算表中,任何两行两列都不相同

 设<G ,*>是一代数系统,G是非空集合,G上的二元运算,它满足以下四个条件时,则称<G ,*>

(1)“ * ”运算是封闭的;

(2)“ * ”运算是可结合的;

(3)存在关于“ * ”的幺元e;

(4)G中每个元素a都有逆元a-1∈G

  • 有限群

    集合G的基数称为群G的阶,记为|G|。若群<G, *>的阶有限,则称之为有限群,否则称为无限群

    |G|称为群的阶
  • 群的阶:群中元素的个数;
  • 元素的阶:<G,*>为群,对于 a∈G,使 a^m=e 最小的正整数m称为元素a的阶;

        注:这里的m次不是普通的乘方,而是表示指对ma进行*运算

  • 子群

<G, *>是群,如果

1SG的非空子集;

2S在运算*下也是群,即<S, *>是群。

则称<S, *><G, *>子群

对任意的群<G, *>, <e, *><G, *>是群G的子群。由于任何群<G, *>都有这两个子群,故称之为平凡子群

子群的证明与求解:

S非空子集;

、运算对S的封闭性;

、运算在S上结合律成立;

S上存在幺元;

S中的每个元素都存在逆元。

性质:

<G,*>是群,<S,*><G,*>的子群,那么<G,*>的幺元也是<S,*>的幺元。

四.阿贝尔群和循环群 

1. 阿贝尔群

 若群<G, *>中的运算*满足交换律,则称<G, *>是一个交换群(阿贝尔(Abel)群)

2.循环群

   <G, *>中,若存在元素g∈G,使得对任意 a∈G,都有:

a = g^ii∈ZZ为整数集合),

则称<G, *>循环群,记为G = <g>(<G, *>= <g>),并称g为该循环群的一个生成元

1. a^0e

2. a^-k(a^k)^-1

判断​​​​​​​是否为循环群:

step1: 假设生成元存在,进行计算

step2: 如果生成元存在则为循环群

注:

​​​​​​​(1)循环群一定是交换群,但交换群不一定是循 环群
(2)循环群的生成元不唯一

  • 12
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值