【机器学习微积分】01 见微知著:导数与微分

1.函数的连续性
1.1.函数在单点处的连续性

从这一讲开始,我们正式进入到微积分的部分中来。我们首先从函数的连续性开始讨论,然后逐步过渡到切线和导数的概念。

函数 f ( x ) f(x) f(x)在具体的取值点 c c c点是否连续,我们针对性的来看下面三幅图中的具体情形:
图1.讨论函数的连续性

在这幅图中,我们发现在点 c c c处,函数的左极限和右极限不相等,即 l i m x → c − f ( x ) ≠ l i m x → c + f ( x ) lim_{x\rightarrow c^{-}}f(x) \neq lim_{x\rightarrow c^{+}}f(x) limx→c−​f(x)​=limx→c+​f(x),因此 l i m x → c f ( x ) lim_{x\rightarrow c}f(x) limx→c​f(x)不存在, c c c点处函数的极限不存在,因此函数 f ( x ) f(x) f(x)在点 c c c处不连续。

图2.讨论函数的连续性

这幅图中情况似乎要稍微好点儿,我们发现 l i m x → c − f ( x ) = l i m x → c + f ( x ) lim_{x\rightarrow c^{-}}f(x)=lim_{x\rightarrow c^{+}}f(x) limx→c−​f(x)=limx→c+​f(x),函数 f ( x ) f(x) f(x)在 c c c点处的极限是存在的,但是从图中可以看出,函数的极限值和 c c c点处函数的实际取值不相等,即: l i m x → c f ( x ) ≠ f ( c ) lim_{x\rightarrow c}f(x) \neq f(c) limx→c​f(x)​=f(c),因此函数 f ( x ) f(x) f(x)在点 c c c处仍然不连续。
图3.讨论函数的连续性

这幅图中以上出现的两个问题都不存在了,我们看到:一方面函数 f ( x ) f(x) f(x)的极限是存在的,而另一方面 l i m x → c f ( x ) = f ( c ) lim_{x\rightarrow c}f(x)=f(c) limx→c​f(x)=f(c),点 c c c处的极限和函数的取值又是相等的,因此在这幅图中,函数 f ( x ) f(x) f(x)在点 c c c处是连续的。

那么,依照严格的定义,对于一个定义在包含点 c c c的区间上的函数 f ( x ) f(x) f(x),如果 l i m x → c f ( x ) = f ( c ) lim_{x\rightarrow c}f(x)=f(c) limx→c​f(x)=f(c)成立,则称函数 f f f在点 c c c处连续。

1.2.函数在区间上的连续性

进一步扩展到区间上,如果函数 f ( x ) f(x) f(x)在开区间上的任意一点连续,那么这个函数 f ( x ) f(x) f(x)就在整个这个开区间上连续。

如果谈到闭区间 [ a , b ] [a,b] [a,b]上的连续性问题,那么就需要着重单独讨论区间的左右两个端点:我们首先从右侧逼近左侧端点 a a a,如果 l i m x → a + f ( x ) = f ( a ) lim_{x\rightarrow a^{+}}f(x) =f(a) limx→a+​f(x)=f(a)成立,则称函数 f ( x ) f(x) f(x)在端点 a a a上右连续,我们再从左侧逼近右侧端点 b b b,即 l i m x → b − f ( x ) = f ( b ) lim_{x\rightarrow b^{-}}f(x) =f(b) limx→b−​f(x)=f(b)成立,则称函数 f ( x ) f(x) f(x)在端点 b b b上右连续。

那么,如果函数在开区间 ( a , b ) (a,b) (a,b)上连续,且在左侧端点 a a a上右连续,在右侧端点 b b b上左连续,此时此刻,我们就能够说函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上是连续的。

2.关于切线

切线是一个大家都非常熟悉的概念,什么是切线?有一种说法是一条曲线的切线只与这条曲线有一个交点。这个概念有很大的局限性,他只对圆环类的曲线有效,而对例如下面的这条曲线,描述显然就不适用了:
图4.普通曲线的切线

实际上,在上面这幅图中,直线显然是曲线在 P P P点处的切线,但是更明显的是,这条直线与曲线的交点数不止一个。那么我们应该怎样更准确的描述切线呢ÿ

  • 13
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

个人笔记(bug,思路,总结)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值