假设我们希望通过碳排放量(CE)、自然灾害发生次数(ND)来预测地球地表温度(GT)。模型可以表示为:
其中,GT是地球地表温度,CE是碳排放量,ND是自然灾害发生次数,、和是模型参数,代表误差项。
数据准备
建模之前,我们需要收集与整理数据。假设我们已经有了过去几十年的年度数据,包括全球平均地表温度、全球碳排放总量和记录的自然灾害发生次数。
编程实现
我们将使用Python的pandas和scikit-learn库来处理数据和建立多元线性回归模型。以下是一个简单示例代码:
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import numpy as np# 加载数据
data = pd.read_csv('climate_data.csv') <