目录
1. 引言
随着工业化的发展,铝材作为一种重要的工程材料,在各行各业中得到了广泛应用,尤其是在汽车、航空、建筑等领域。然而,铝材在生产、运输和加工过程中常常会出现各种缺陷,如划痕、裂纹、凹陷、气泡等,这些缺陷不仅影响铝材的外观和性能,也直接影响到产品的质量。因此,如何快速、准确地检测铝材的缺陷成为了一个亟待解决的问题。
传统的铝材缺陷检测多依赖人工检查,这不仅效率低下,而且容易受到人为因素的影响,难以达到高精度的要求。近年来,随着深度学习技术的发展,基于计算机视觉的铝材缺陷自动检测系统得到了广泛关注。特别是YOLO(You Only Look Once)系列模型,凭借其高效的目标检测能力,已经成为工业检测中应用最广泛的深度学习方法之一。
本文将详细介绍如何基于深度学习的YOLOv5目标检测模型,开发一个铝材缺陷检测与识别系统,并为该系统设计一个简单易用的UI界面,使其能够实现铝材缺陷的实时检测与分类。
2. 项目概述
2.1 项目目标
本项目的目标是基于YOLOv5