1. 项目背景与研究意义
1.1 现代农业对环境监控的需求
随着智能农业和精准农业的迅速发展,大棚种植成为提升作物产量与质量的重要方式。大棚环境监控不仅需要关注温湿度、光照等环境因素,更重要的是实时监测作物生长状态,及时发现病虫害、作物成熟度以及叶片黄化、枯萎等异常情况,实现科学管理和自动化决策。
1.2 计算机视觉在农业中的应用现状
传统环境监控依赖人工巡查,效率低且容易漏检。计算机视觉结合深度学习目标检测技术,能够自动识别作物病斑、虫害、成熟果实、环境异常(如积水、杂草)等,极大提升监测效率和准确度。
YOLOv8是Ultralytics发布的最新一代实时目标检测模型,兼顾准确率与推理速度,适合部署在农业监控的边缘设备与移动端。
2. 技术选型与工具链介绍
- 深度学习框架:PyTorch(YOLOv8基于Ultralytics库)
- 目标检测模型:YOLOv8n(轻量版,适合快速训练和边缘推理)
- 开发语言:Python 3.8+
- 标注工具