引言
铝材广泛用于工业制造和工程建设领域,其表面质量直接影响产品的性能和市场竞争力。在铝材生产过程中,表面可能出现裂纹、划痕、凹坑等多种缺陷。传统的人工检测方式容易受到主观因素影响,且效率较低。随着深度学习技术的发展,基于目标检测模型的自动化检测系统逐渐成为工业质检领域的热门研究方向。
本文基于YOLOv8构建了铝材缺陷检测识别系统,并设计了一个用户友好的UI界面,支持图片上传和实时视频检测功能,助力铝材表面缺陷的高效检测。
系统功能描述
- 检测对象:铝材表面的常见缺陷类型(如裂纹、划痕、气孔、凹坑等)。
- 功能模块:
- 图片上传检测:用户上传图片进行缺陷检测并显示结果。
- 实时视频检测:调用摄像头捕获视频流并实时检测缺陷。
- 用户界面:使用Tkinter开发简单易用的交互界面。
- 技术框架:基于YOLOv8进行缺陷检测,结合Python实现模型推理和界面交互。
系统开发流程
- 数据准备与预处理。
- 使用YO