1. 引言
随着深度学习和计算机视觉技术的迅速发展,自动化农业检测系统在现代农业生产中的应用越来越广泛。柠檬作为一种常见的水果,其品质等级直接影响消费者的购买决策及市场价值。传统的柠檬等级检测方法主要依赖人工评定,效率低且易受人为因素影响。为了解决这一问题,基于深度学习的柠檬等级检测系统应运而生。该系统通过使用YOLOv8深度学习模型进行图像识别,能够自动判断柠檬的成熟度和质量等级,大大提高了检测的准确性与效率。
本博客将详细介绍如何构建基于深度学习的柠檬等级检测系统。我们将使用YOLOv8进行目标检测和分类,结合PyQt5框架开发一个简洁易用的UI界面,实现图像上传和实时视频流检测。并介绍如何构建一个柠檬数据集、训练YOLOv8模型、设计UI界面、以及最终的应用实现。
目录
2. 项目概述
2.1 项目目标
本项目的目标是构建一个柠檬等级检测系统,通过深度学习模型自动检测柠檬的等级。该系统能够实现以下功能:
- 自动检测柠檬等级:通过图像中的柠檬特征,自动判断其成