1. 引言
电塔是现代电力系统中的关键设施,其稳定性和安全性直接影响电力输送的可靠性。为了保证电塔的正常运行,必须定期进行巡检和维护。传统的电塔巡检通常依赖人工巡查,这不仅耗时费力,而且容易受到人为因素的影响。近年来,随着深度学习和计算机视觉技术的进步,自动化电塔缺陷检测系统逐渐成为可能,它能够通过图像识别技术准确地检测电塔的缺陷,提高巡检效率和准确性。
本项目旨在构建一个基于深度学习的电塔缺陷检测系统,采用YOLOv8模型进行缺陷的自动识别,并通过PyQt5构建一个用户友好的UI界面,使得用户能够轻松上传图像或启动视频流进行实时检测。本项目将详细介绍数据集的构建、YOLOv8模型的训练、UI界面的设计与实现,以及如何将这些技术组合成一个完整的系统。
目录
2. 项目概述
2.1 项目目标
本项目的目标是开发一个基于YOLOv8的电塔缺陷检测识别系统,能够实现以下功能:
- 自动检测电塔缺陷:通过深度学习模型检测图像中的电塔缺陷,并进行分类&#