随着深度学习技术的不断发展,人工智能在农业和野生植物的研究领域取得了显著成就。近年来,深度学习在植物识别、自动化农作物监测和野生植物辨识方面得到了广泛的应用。尤其是对于可食用野生植物的检测与识别,它不仅有助于提高野外生存能力,解决食物短缺问题,还能为食品安全提供技术支持。本文将介绍如何基于深度学习和YOLOv8构建一个可食用野生植物的检测识别系统,系统将结合UI界面,方便用户上传图片并实时识别植物种类。
目录
一、系统概述
本系统的主要目标是利用深度学习方法,基于YOLOv8(You Only Look Once 版本8)模型实现对可食用野生植物的自动检测与识别。YOLOv8模型是物体检测领域中一个非常高效且精度较高的模型。结合UI界面,用户可以便捷地上传植物图片并快速得到植物的识别结果。具体包括以下几个模块:
- 数据集准备与处理:收集并处理包含可食用野生植物的图像数据集,进行标注与增强。
- YOLOv8模型训练:使用YOLOv8模型进行训练,针对野生植物数据集进行优化。
- UI界面设计:开发一个简易的用户界面,支持图片上传并显示识别结果。
- 系统测试与优化