一、背景与研究意义
随着全球安全问题的日益严峻,机场、地铁、车站等场所对行李的安全检查需求激增。X光图像安检是一种常见的行李检查手段,通过检测行李中的潜在危险品(如刀具、枪支、爆炸物等),可以有效提升公共场所的安全性。然而,传统的安检方式依赖于人工检测,不仅耗时耗力,还容易受到检测员疲劳或主观因素的影响。
基于深度学习的X光安检系统通过结合先进的目标检测算法(如YOLO系列),能够实现高效、精准的危险品自动检测,并具备实时性和可扩展性。本文将详细介绍如何基于YOLOv10构建一个完整的X光安检危险品检测系统,并实现可视化的UI界面。
目录
二、整体系统架构
本项目的整体架构可以分为以下几个模块:
-
数据集准备:通过收集公开数据集(如 SIXray 数据集)或构建自定义数据集,完成图像标注和预处理。
-
模型训练:基于YOLOv10,训练一个高性能的危险品检测模型。