基于YOLOv10深度学习的X光安检危险品检测系统

一、背景与研究意义

随着全球安全问题的日益严峻,机场、地铁、车站等场所对行李的安全检查需求激增。X光图像安检是一种常见的行李检查手段,通过检测行李中的潜在危险品(如刀具、枪支、爆炸物等),可以有效提升公共场所的安全性。然而,传统的安检方式依赖于人工检测,不仅耗时耗力,还容易受到检测员疲劳或主观因素的影响。

基于深度学习的X光安检系统通过结合先进的目标检测算法(如YOLO系列),能够实现高效、精准的危险品自动检测,并具备实时性和可扩展性。本文将详细介绍如何基于YOLOv10构建一个完整的X光安检危险品检测系统,并实现可视化的UI界面。


目录

一、背景与研究意义

二、整体系统架构

三、数据集准备

1. 数据集来源

(1) 公共数据集:

(2) 自定义数据集:

2. 数据标注

3. 数据预处理

四、YOLOv10 模型训练

1. 环境配置

2. YOLOv10 配置文件调整

3. 模型训练代码

五、实时检测模块

1. 摄像头实时检测

检测代码

六、UI 界面设计

1. 使用 PyQt5 构建界面

界面功能

界面代码

七、实验与结果

八、总结与展望


二、整体系统架构

本项目的整体架构可以分为以下几个模块:

  1. 数据集准备:通过收集公开数据集(如 SIXray 数据集)或构建自定义数据集,完成图像标注和预处理。

  2. 模型训练:基于YOLOv10,训练一个高性能的危险品检测模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值