(全部都是公开资料,不代写论文,请勿盲目订阅)
2025年数学建模美赛期间,会发布思路和代码,赛前半价,赛前会发布往年美赛的经典案例,赛题会结合最新款的chatgpt o1 pro 分析,会根据赛题难度,选择合适的题目着重分析,没有代写论文服务,只会发布思路和代码,因为赛制要求,不会回复私信。内容可能达不到大家预期,请不要盲目订阅。已开通200美元/月的chatgpt pro会员,会充分利用chatgpt o1 pro进行分析发布。没有二次收费,2025年所有数学建模竞赛的思路都会发布到此专栏内,只需订阅一次。
1. 引言
向量自回归(Vector Autoregression,简称VAR)模型是一种多变量时间序列预测模型,它能够处理多个时间序列的动态关系,尤其适用于描述多个时间序列之间的相互依赖关系。VAR模型是经济学、金融学、社会科学等领域中常用的分析工具,广泛应用于经济预测、市场分析、政策评估等问题。通过建立和分析多个变量之间的动态关系,VAR模型为预测和决策提供了有力的支持。
在数学建模竞赛中,向量自回归模型作为处理多变量时间序列问题的有力工具,能有效预测不同变量之间的关系和未来趋势。尤其在面对复杂的多维数据时,VAR模型能够捕