一、引言
随着人工智能和深度学习技术的飞速发展,智能安防监控系统已经从传统的摄像头监控进化为更加智能化的行为分析系统。这些系统不仅能够实时捕捉到视频中的目标,还能检测出异常行为或可疑活动,帮助提高公共安全、预防犯罪或及时处理突发事件。异常行为检测作为智能安防监控的一个重要组成部分,旨在识别和分类视频中的非正常行为,例如打斗、盗窃、跌倒、闯入等。
YOLO(You Only Look Once)系列模型,特别是YOLOv5、YOLOv8和YOLOv10,在目标检测方面展现了出色的性能,成为当前异常行为检测系统中常用的模型。本篇博客将介绍如何结合YOLOv5、YOLOv8和YOLOv10进行智能安防监控中的异常行为检测,并通过构建UI界面进行展示,帮助用户实时查看检测结果。
二、YOLO系列模型概述
1. YOLOv5
YOLOv5是YOLO系列中的一个重要版本,它由Ultralytics公司开发,使用PyTorch框架实现,并成为了目标检测领域中广泛使用的模型之一。与传统的YOLO模型相比,YOLOv5在推理速度和精度上做了优化,尤其适用于实时目标检测任务。
YOLOv5的优点包括:
- 快速的推理速度,能够处理高帧率的视频流。
- 较好的精度,