一、引言
跌倒检测是近年来随着老龄化社会和智能监控设备的普及而成为研究热点之一。老年人群体以及有跌倒风险的患者群体在日常生活中发生跌倒的概率较高,这种事件不仅对患者自身的健康造成了威胁,甚至可能导致长期的伤害或生命危险。因此,开发一种智能的跌倒检测系统具有重要的现实意义,能够通过监控设备实时监测到跌倒事件并及时发出警报。
本项目结合深度学习目标检测技术,利用 YOLOv11(You Only Look Once)进行跌倒检测,同时设计图形用户界面(GUI)来便捷地展示结果。本文将详细介绍整个系统的实现过程,包括数据准备、模型训练、界面设计以及如何将模型应用于实时视频监控。
二、项目目标与挑战
本项目的目标是构建一个智能的跌倒检测系统,利用深度学习模型YOLOv11对视频中的人类动作进行检测,从而判断是否发生跌倒。具体目标包括:
- 实时性要求:需要在视频流中实时检测跌倒事件,确保系统能够及时响应。
- 高精度:系统必须能够准确地识别跌倒动作,并且避免误报或漏报。
- 易用性:为非专业人士设计一个简单易操作的用户界面,能够方便地进行检测。