引言
在现代教育管理中,考试的公平性与安全性一直是教师、教育机构以及学生关心的焦点。传统的人工监考模式虽然能在一定程度上保证考试的公正性,但也存在着诸多局限:监考人员的工作压力大、监考过程中可能的疏漏以及由于人为因素导致的考试作弊等问题。随着人工智能技术的飞速发展,基于深度学习的智能监考系统应运而生,利用计算机视觉和实时检测技术来辅助或代替人工监考,有效提高考试的公平性和安全性。
YOLO(You Only Look Once)系列深度学习目标检测算法,凭借其高效的目标检测能力,成为实时监控和自动检测系统的首选算法。YOLOv8是YOLO系列的最新版本,拥有更高的检测精度和速度,尤其适用于实时监控任务。本文将基于YOLOv8算法实现一个智能监考系统,通过图像和视频流的实时分析来识别作弊行为,并结合Python和PySide6开发一个用户友好的可视化界面,使得监考过程更加高效、智能。
1. YOLOv8概述
1.1 YOLO系列简介
YOLO(You Only Look Once)是一种实时目标检测系统,由Joseph Redmon等人于2016年首次提出。YOLO的核心思想是通过一次前向传播同时预测多个目标的类别和位置,从而大大提高了检测效率。YOLOv8作为YOLO系列的最新版本,进