目录
- 引言
- YOLOv11简介
- 无人机目标检测的挑战
- 数据集介绍
- 系统架构
- 环境配置
- 数据预处理
- 模型训练
- PySide6界面设计
- 系统集成与测试
- 结果分析
- 结论与未来工作
1. 引言
无人机目标检测是计算机视觉领域的一个重要研究方向,广泛应用于军事侦察、灾害监测、农业巡检等领域。传统的无人机目标检测方法依赖于手工特征提取和分类器设计,但这种方法在面对复杂场景和多样化目标时表现不佳。近年来,深度学习技术,尤其是基于卷积神经网络(CNN)的目标检测算法,为无人机目标检测提供了新的解决方案。
YOLO(You Only Look Once)系列算法因其高效性和准确性在目标检测领域广受欢迎。YOLOv11作为YOLO系列的最新版本,在检测精度和速度上都有显著提升。本文将详细介绍如何基于YOLOv11构建一个无人机目标检测系统,包括数据集的选择、模型的训练、PySide6界面的设计以及系统的集成与测试。
2. YOLOv11简介
YOLOv11是YOLO系列的最新版本,相较于之前的版本,YOLOv11在检测精度和速度上都有显著提升。其主要特点包括&#x