公共艺术展中的艺术品识别:基于YOLOv5的深度学习应用

1. 引言

公共艺术展是文化交流和艺术欣赏的重要方式,涵盖雕塑、画作、装置等多种艺术形式。然而,传统的艺术品管理依赖人工巡查,容易受限于人力和时间成本。近年来,深度学习技术的发展为艺术品识别提供了新的解决方案。YOLOv5(You Only Look Once v5)作为目前最流行的目标检测算法之一,具有高效、实时、准确的特点,可以用于艺术品的自动识别和分类。

本博客将详细介绍如何使用YOLOv5实现公共艺术展中的艺术品识别,包括数据集的准备、模型训练、UI界面搭建以及实时识别系统的开发。同时,我们提供完整的代码实现,以便读者能够复现整个过程。


2. 数据集介绍

为了训练和测试YOLOv5模型,我们需要构建一个包含雕塑、画作和装置三大类别的艺术品数据集。以下是几个可参考的数据集来源:

  • WikiArt Datasethttps://www.wikiart.org/): 该数据集包含来自不同流派的画作,可用于训练画作分类模型。
  • Google Open Images Dataset
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习YOLO目标检测实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值