1. 引言
公共艺术展是文化交流和艺术欣赏的重要方式,涵盖雕塑、画作、装置等多种艺术形式。然而,传统的艺术品管理依赖人工巡查,容易受限于人力和时间成本。近年来,深度学习技术的发展为艺术品识别提供了新的解决方案。YOLOv5(You Only Look Once v5)作为目前最流行的目标检测算法之一,具有高效、实时、准确的特点,可以用于艺术品的自动识别和分类。
本博客将详细介绍如何使用YOLOv5实现公共艺术展中的艺术品识别,包括数据集的准备、模型训练、UI界面搭建以及实时识别系统的开发。同时,我们提供完整的代码实现,以便读者能够复现整个过程。
2. 数据集介绍
为了训练和测试YOLOv5模型,我们需要构建一个包含雕塑、画作和装置三大类别的艺术品数据集。以下是几个可参考的数据集来源:
- WikiArt Dataset(https://www.wikiart.org/): 该数据集包含来自不同流派的画作,可用于训练画作分类模型。
- Google Open Images Dataset(