1. 引言
随着现代装修行业的快速发展,室内装修材料的质量和类型变得尤为重要。在家庭、商业建筑或公共空间的装修过程中,识别和分类不同的装修材料,尤其是墙面、地板和瓷砖的分类,已成为质量控制的重要一环。传统的手工检查方式效率低且容易产生错误,因此,借助计算机视觉和深度学习技术进行自动化材料识别,能大大提高检测效率和准确性。
在本项目中,我们将使用YOLOv5(You Only Look Once version 5)目标检测模型来实现墙面、地板、瓷砖等装修材料的自动检测与分类。通过结合深度学习与UI界面展示,我们将能够实时识别和分类不同的装修材料,并提供相应的管理和决策支持。
2. YOLOv5概述
YOLOv5是由Ultralytics开发的一种目标检测模型,它基于深度卷积神经网络,具有实时检测的能力,广泛应用于图像识别、视频监控、物品检测等领域。YOLOv5的特点包括:
- 快速与高效:YOLOv5相较于其他目标检测方法,拥有更高的检测速度,适合实时处理。
- 高精度:YOLOv5采用了最新的卷积神经网络架构,具有很高的识别精度。
- 灵活性和扩展性:YOLOv5支持多