1. 引言
植物是农业生产的基础,农作物的健康状况直接影响到农业产量和经济效益。然而,病虫害的爆发和传播常常导致作物减产甚至绝收,给农业生产带来巨大损失。据统计,全球每年约有 20%~40% 的农作物因病虫害而受损,造成的经济损失高达数千亿美元。
在传统的农业生产中,农民通常依赖于肉眼观察和经验判断来识别病虫害。然而,这种方法存在以下几个局限性:
✅ 效率低下:依赖于人工监测需要大量人力,且覆盖面有限。
✅ 准确性不足:由于病虫害的种类繁多且症状复杂,不同个体可能给出不同的判断。
✅ 难以大规模推广:在大面积农田中进行精细化管理和实时监测具有很大挑战性。
为了解决这些问题,基于深度学习的植物病虫害识别技术成为研究热点。YOLO(You Only Look Once)作为一种主流的目标检测算法,以其出色的速度和准确性被广泛应用于农业图像识别领域。
在本项目中,我们将构建一个基于 YOLOv5 的植物病虫害实时监测系统,涵盖以下内容:
- 检测目标:叶片(leaf)、昆虫(insect)、真菌