1. 引言
随着人工智能(AI)技术的迅猛发展,深度学习在多个领域取得了显著的进展,尤其是在计算机视觉方面。人群密度检测作为计算机视觉的重要应用之一,在公共安全、交通管理、安防监控等多个领域有着广泛的应用。通过深度学习方法,尤其是基于YOLO(You Only Look Once)系列模型,可以在各种环境下对人群进行实时检测与密度估计。本博客将详细介绍如何利用YOLOv8/v7/v6/v5模型构建一个人群密度检测系统,包括模型训练、数据集的准备、UI界面的实现及代码的详细解析。
2. 项目背景与目标
2.1 背景
人群密度检测是一项重要的计算机视觉任务,旨在从视频监控或静态图像中估算区域内的人群数量或密度。该技术在多个领域具有重要应用,如:
- 公共安全:检测人群密集度,以评估安全风险;
- 交通管理:分析交通枢纽的人流量,优化交通调度;
- 安防监控:实时监测人群聚集情况,避免群体事件的发生。
传统的密度估计方法