1. 背景介绍
机器人竞赛中,识别场地内的目标物体是完成任务的重要环节,依赖于高效、准确的目标检测技术。深度学习,尤其是基于YOLO系列的单阶段目标检测模型,因其出色的速度和精度,在机器人视觉识别中被广泛应用。本文将系统讲解如何基于YOLOv8模型构建一个用于机器人竞赛的目标识别系统,配合一个简洁直观的UI界面,方便实时目标检测展示。
2. YOLOv8模型概述
YOLO(You Only Look Once)系列是单阶段目标检测的代表作,YOLOv8作为Ultralytics最新推出的版本,继承了YOLOv5的高效结构,进一步提升了检测精度和推理速度。
-
特点:
- 端到端训练,无需复杂预处理
- 采用CSPDarknet骨干网络,增强特征表达能力
- 具备高效的锚框机制和损失函数设计
- 支持多种训练技巧(数据增强、迁移学习等)
- 易于部署,支持PyTorch与ONNX导出
3. 比赛目标物识别的挑战与需求分析
机器人比赛中目标物多样且环境复杂,识别系统需满足: