一、引言
随着城市化进程的加速,汽车的数量不断增加,停车问题成为城市交通管理中的重要问题。尤其是在繁忙的商业区、住宅区或机场等地方,停车难的问题尤为突出。为了提高停车位利用率,减轻城市交通拥堵,越来越多的城市开始采用智能停车管理系统。停车位检测作为智能停车管理系统的重要组成部分,能够通过自动化手段实时识别空闲的停车位,优化停车资源的调度与管理。
然而,传统的停车位检测方法往往依赖于传感器、地面标记或人工监控,难以满足大规模、高效率和高准确度的需求。近年来,随着深度学习技术的快速发展,基于深度学习的目标检测方法成为了解决停车位检测问题的重要技术手段。尤其是YOLO(You Only Look Once)系列目标检测算法,其优越的性能使其在停车位检测任务中得到了广泛的应用。
本文将详细介绍如何基于YOLOv5、YOLOv6、YOLOv7和YOLOv8等深度学习模型,设计并实现一个远距离停车位检测系统。该系统将结合深度学习模型与用户界面(UI),实现对远距离停车位的自动检测与识别。系统能够帮助驾驶员实时找到空闲停车位,提高停车效率,减少寻找停车位的时间,从而改善城市的停车环境。
二、背景与需求
2.1 远距离停车位检测的挑战
远距离停车位检测涉及到对远距离、高角度、复杂环境中的停车位