1. 引言
胸部X光检查是诊断肺部疾病最常见且经济有效的影像学方法之一。自动化的肺部疾病检测系统可以显著提高放射科医生的工作效率,特别是在医疗资源匮乏的地区。本文将详细介绍如何使用YOLOv10模型在ChestX-ray14数据集上实现14种常见肺部疾病的检测与分类,并构建一个完整的深度学习解决方案,包括数据预处理、模型训练、评估以及用户界面开发。
1.1 研究背景
根据世界卫生组织统计,呼吸系统疾病是全球主要的死亡原因之一。胸部X光片包含丰富的诊断信息,但人工解读需要专业放射科医生且耗时较长。深度学习技术在医学图像分析领域的突破,使得自动化肺部疾病检测成为可能。与传统的计算机辅助诊断(CAD)系统相比,基于深度学习的方法具有更强的特征学习能力和更高的准确率。
1.2 ChestX-ray14数据集概述
ChestX-ray14是由美国国立卫生研究院(NIH)发布的公开数据集,包含112,120张 frontal-view 胸部X光图像,标注了14种常见肺部疾病:
- 肺不张(Atelectasis)
- 心脏肥大(Cardiomegaly)
- 肺实变(Consolidation)
- 肺水肿(Edema)
- 肺气肿(Emphysema)
- 纤维化(Fibrosis)
- 疝气(Hernia)
- 浸润(