在计算机视觉领域,行人检测作为一种重要的目标检测任务,已经在自动驾驶、安防监控、人机交互等领域得到了广泛应用。行人检测的挑战性在于行人的多样性、复杂背景以及各种光照条件。近年来,随着深度学习技术的发展,YOLO(You Only Look Once)系列模型,特别是YOLOv8,已成为行人检测任务中的主流方法。本文将以Caltech Pedestrian数据集为例,详细介绍如何使用YOLOv8进行行人检测,并结合UI界面实现实时的检测系统。
一、YOLOv8简介
YOLOv8是YOLO系列中的最新版本,相比于前几代YOLO模型,YOLOv8在多个方面做了优化,尤其是在速度和精度上做了显著提升。YOLOv8的优势不仅体现在高效的推理速度,还包括较高的检测精度,能够应对复杂的视觉场景和实时检测需求。
YOLOv8的主要特点:
- 高效性:YOLOv8在保证精度的同时,极大提高了推理速度,适合在实时视频流中进行检测。
- 精度优化:YOLOv8在特征提取和后处理环节做了多项优化,使得模型在多个标准数据集上表现优异。
- 适应性强:支持不同硬件平台,如GPU和TPU