深度学习情感识别:使用YOLOv8进行AffectNet数据集上的面部情感检测

引言

情感分析是计算机视觉领域中的一个重要任务,特别是在面部表情识别方面。AffectNet数据集是一个广泛使用的面部表情数据集,专注于情感分析任务,包括多种情感类别,如快乐、悲伤、愤怒、惊讶等。随着深度学习技术的进步,基于卷积神经网络(CNN)的目标检测模型,特别是YOLO系列,已经取得了显著的成果。

本文将介绍如何利用YOLOv8模型,基于AffectNet数据集进行面部情感识别。我们将包括从数据集下载、模型训练、评估到UI界面搭建的全过程,帮助您全面了解如何使用YOLOv8进行情感识别任务。本篇博客还会提供详细的代码实现,帮助您快速入门并实现情感识别系统。

目录

  1. YOLOv8概述与优势
  2. AffectNet数据集介绍
  3. YOLOv8模型配置与训练
### 面部情感识别数据集概述 面部情感识别是一项重要的研究领域,涉及通过计算机视觉技术对面部表情进行分类和理解。为了支持这一领域的研究工作,已经开发并公开了许多高质量的数据集。以下是几个常用的面部情感识别数据集及其相关信息: #### CK+ 数据集 CK+ 是一个广泛使用面部表情数据库,包含了七种基本情绪类别(愤怒、厌恶、恐惧、快乐、悲伤、惊讶以及中立)。它提供了高分辨率图像序列,适合用于训练深度学习模型[^1]。 #### FER2013 数据集 FER2013 是 Kaggle 上发布的一个大规模公共数据集,专为面部表情识别设计。此数据集中包含超过 35,000 张人脸图片,标注有不同的情感标签。这些图像是从互联网上抓取的真实场景照片,因此具有较高的多样性[^2]。 ```python import pandas as pd from sklearn.model_selection import train_test_split # 加载 FER2013 数据集 (假设已下载到本地文件 'fer2013.csv') data = pd.read_csv('fer2013.csv') # 将像素值转换成 NumPy 数组形式 pixels = data['pixels'].tolist() faces = [] for pixel_sequence in pixels: face = [int(pixel) for pixel in pixel_sequence.split(' ')] faces.append(face) faces = np.asarray(faces).reshape(-1, 48, 48, 1) labels = pd.get_dummies(data['emotion']).as_matrix() X_train, X_test, y_train, y_test = train_test_split(faces, labels, test_size=0.2, random_state=42) ``` #### AffectNet 数据集 AffectNet 是目前最大的带注解的人脸表情数据集之一,涵盖了八类离散情绪以及连续维度的情绪表示方法。它的规模庞大且覆盖范围广,非常适合用来构建复杂的机器学习算法。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值