引言
情感分析是计算机视觉领域中的一个重要任务,特别是在面部表情识别方面。AffectNet数据集是一个广泛使用的面部表情数据集,专注于情感分析任务,包括多种情感类别,如快乐、悲伤、愤怒、惊讶等。随着深度学习技术的进步,基于卷积神经网络(CNN)的目标检测模型,特别是YOLO系列,已经取得了显著的成果。
本文将介绍如何利用YOLOv8模型,基于AffectNet数据集进行面部情感识别。我们将包括从数据集下载、模型训练、评估到UI界面搭建的全过程,帮助您全面了解如何使用YOLOv8进行情感识别任务。本篇博客还会提供详细的代码实现,帮助您快速入门并实现情感识别系统。
目录
- YOLOv8概述与优势
- AffectNet数据集介绍
- YOLOv8模型配置与训练