Pedestrian Detection 2015:基于YOLOv8与PyQt5的行人检测系统实现

一、项目背景与意义

1.1 背景介绍

行人检测是计算机视觉领域中重要的任务之一,广泛应用于智能监控、自动驾驶、城市交通管理等领域。自2015年起,行人检测技术开始迅速发展,标志性的“Pedestrian Detection 2015”任务提出了更严苛的检测精度和实用性指标。近年来,随着YOLO系列模型的演进,目标检测的实时性与准确性得到了极大的提升。

本项目旨在构建一个基于YOLOv8的行人检测系统,并集成图形用户界面(GUI),实现从图像、视频文件甚至实时摄像头中对行人目标的检测与展示。


二、数据集选择与处理

2.1 参考数据集

📦【推荐1】Caltech Pedestrian Dataset
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习YOLO目标检测实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值