一、项目背景与意义
1.1 背景介绍
行人检测是计算机视觉领域中重要的任务之一,广泛应用于智能监控、自动驾驶、城市交通管理等领域。自2015年起,行人检测技术开始迅速发展,标志性的“Pedestrian Detection 2015”任务提出了更严苛的检测精度和实用性指标。近年来,随着YOLO系列模型的演进,目标检测的实时性与准确性得到了极大的提升。
本项目旨在构建一个基于YOLOv8的行人检测系统,并集成图形用户界面(GUI),实现从图像、视频文件甚至实时摄像头中对行人目标的检测与展示。
二、数据集选择与处理
2.1 参考数据集
📦【推荐1】Caltech Pedestrian Dataset
- 官网:http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
- 优点:包含复杂城市街景下的视频数据,密集、遮挡严重。
- 格式:提供原始视频和MAT标注文件,可转换为YOLO格式。