一、前言
在智能交通系统(ITS)和自动驾驶领域中,如何实时、精确地检测和识别街道上的各种障碍物成为了一个关键挑战。这些障碍物包括行人、车辆、道路障碍等,其存在会直接影响交通流量的安全性与效率。特别是在自动驾驶汽车的环境感知系统中,障碍物检测起着至关重要的作用。
本博客将介绍如何使用YOLOv8(You Only Look Once v8)模型对Street Hazards Dataset进行目标检测。该数据集包含五种类别:道路障碍物、行人、车辆、交通信号灯和交通标志。我们将讲解如何使用YOLOv8对这些类别进行训练,如何结合图形用户界面(UI)实时展示检测结果,并给出完整的代码实现。通过本文,读者将掌握如何实现街道障碍物的自动检测,推动智能交通和自动驾驶技术的应用。
二、Street Hazards Dataset概述
2.1 数据集简介
Street Hazards Dataset是一个专门为街道障碍物检测任务设计的数据集。它涵盖了现实世界中可能出现在城市街道上的多种障碍物。该数据集主要用于训练目标检测模型,以帮助自动驾驶系统或智能交通监控系统实时检测、识别街道上的障碍物。数据集包含以下五个类别:
- 道路障碍物