一、前言
人脸识别技术是计算机视觉领域中的重要研究方向,近年来得到了广泛的应用,尤其在安全监控、身份验证、社交媒体、智能设备等领域。在众多的人脸识别数据集中,LFW(Labeled Faces in the Wild) 数据集因其多样性和挑战性,成为了人脸识别领域的经典数据集之一。
本博客将介绍如何使用YOLOv10模型对LFW数据集中的多个人物进行检测和识别,并结合用户界面(UI)展示检测结果。通过详细的代码示例,我们将带你一步步完成LFW数据集的处理、YOLOv10模型训练与推理、以及UI界面的设计。
二、LFW(Labeled Faces in the Wild)数据集介绍
LFW(Labeled Faces in the Wild) 数据集由斯坦福大学和美国麻省理工学院(MIT)联合发布,旨在为人脸识别研究提供标准的数据集。LFW数据集的特点包括:
- 类别:包含多个人物,类别数量为5749个(每个类别代表一个人物)。数据集中有多个面孔样本,每个面孔有多个不同角度、表情和光照条件。
- 数据规模