一、前言
随着自动驾驶技术的迅速发展,目标检测和跟踪成为了无人驾驶系统的核心技术之一。尤其是在复杂的交通环境中,如何精确识别并跟踪不同类型的物体(如车辆、行人、交通标志等)对于自动驾驶系统的安全性和可靠性至关重要。
RoboCar数据集是专为自动驾驶任务设计的一个数据集,涵盖了6个类别的目标,包括车辆、行人、交通标志等。这些目标的检测和跟踪对于实现智能交通和自动驾驶至关重要。
本博客将深入介绍如何利用YOLOv10模型在RoboCar数据集上进行目标检测与跟踪,并通过UI界面实现实时检测。本文将提供详细的步骤,包括数据集准备、模型训练、推理过程、UI界面设计等,帮助读者全面了解如何在实际应用中使用YOLOv10进行目标检测与跟踪。
二、RoboCar数据集简介
RoboCar数据集是为自动驾驶系统开发的目标检测和跟踪任务数据集。它包含了多个交通场景中的6个类别:车辆、行人、交通标志、路面、建筑、树木。数据集中的每个目标都有详细的标注信息,适用于目标检测和多目标跟踪任务。
-
类别:RoboCar数据集包含6个类别:
- 车辆(C