一、前言
在智能交通系统的研究和应用中,目标检测技术为车载监控、交通流量分析、智能停车等领域提供了核心支持。特别是对于各种不同类型的车辆,如**汽车(Car)、卡车(Truck)、厢式车(Van)**等的检测,已成为交通管理、公共安全以及自动驾驶领域的重要任务之一。
CASS (Car, Van, and Truck Dataset) 是一个专门用于车辆检测的公开数据集,包含了三种常见车辆类型的图像数据。本文将基于 YOLOv10 目标检测模型,结合 UI界面,实现对该数据集中车辆的检测与分类。通过这一过程,我们将展示如何构建一个高效的目标检测系统,以及如何在实际场景中应用YOLOv10模型进行高效的车辆检测。
二、CASS数据集概述
2.1 数据集介绍
CASS (Car, Van, and Truck Dataset) 是一个专注于车辆分类和检测的图像数据集,包含三种不同类别的车辆:汽车(Car)、卡车(Truck)和厢式车(Van) 。每个图像中,车辆类别都被精确标注,包含