一、前言
随着计算机视觉领域的快速发展,目标检测技术已经得到了广泛的应用。在智能交通、自动驾驶、安防监控等领域,准确、实时的目标检测是实现这些应用的关键技术之一。YOLO(You Only Look Once)作为一种高效、快速的目标检测算法,广泛应用于各种视觉任务中。本文将使用YOLOv10对Swedish Car Dataset数据集进行目标检测。
Swedish Car Dataset是一个包含不同类型汽车的图像数据集,涵盖了小汽车、SUV、卡车、厢式车和摩托车五个类别。本文将详细介绍如何使用YOLOv10模型进行训练与目标检测,并结合UI界面进行结果展示。我们将提供完整的代码,并深入讲解数据集的使用方法、模型训练的过程以及如何在实际应用中使用YOLOv10进行汽车检测。
二、Swedish Car Dataset 数据集概述
2.1 数据集介绍
Swedish Car Dataset是一个包含多个类别汽车的图像数据集,常用于车辆检测和分类任务。数据集中包含了五种不同的车辆类型:
- 小汽车(Car)
- SUV(SUV)