1. 引言
随着工业自动化的飞速发展,各行各业对安全生产的要求越来越高。特别是在危险区域作业的场所,工作人员的安全装备至关重要。常见的安全装备包括安全帽、防护服、护目镜、防护手套等。这些装备能够有效防止工人在作业过程中受到潜在危险的伤害。因此,如何实时监控危险区域内人员是否佩戴安全装备,成为了一个亟待解决的问题。
传统的人工安全检查方法不仅效率低,而且容易出现疏漏,无法实现24小时全天候监控。近年来,基于深度学习的目标检测技术在安全领域得到了广泛应用。YOLOv5(You Only Look Once v5)是一种先进的目标检测算法,它能够在高速且精确的情况下完成目标检测任务,因此非常适合应用于危险区域人员安全装备检测。
本文将详细介绍如何利用YOLOv5构建一个危险区域人员安全装备检测系统,并结合UI界面实现对检测结果的实时展示与交互操作。我们将涵盖数据集准备、YOLOv5模型训练、UI界面设计等内容,并提供完整的代码实现。
2. YOLOv5概述
YOLOv5(You Only Look Once v5)是YOLO系列中的一个版本,它在目标检测方面有着出色的性能。YOLOv5采用单次前向传播来完成目标的定位和分类,相比传统方法,它能够在更短的时间内给出目标的检测结果。