📚 一、研究背景与项目意义
在现代实验室环境中,样本管(如试管、血液采样管等)被广泛应用于样本的保存、分析和运输。随着实验室样本管理量的增加,人工识别和管理样本管变得越来越困难,导致以下问题:
- 误识别:人工识别存在疏漏,可能导致样本的丢失或错误分析。
- 效率低下:人工查找和核对样本管需要大量的时间,影响实验进度。
- 误放置:人工操作可能导致样本管的错误放置,甚至丢失。
因此,开发一个自动化的样本管识别系统,可以有效提高实验室样本管理的效率和准确性。基于YOLOv5的目标检测模型能够准确地识别实验室样本管的位置,并在UI界面中进行显示和管理,从而实现自动化的样本管管理。
🏗️ 二、系统架构设计
本系统的目标是通过YOLOv5对实验室样本管进行实时检测,并通过一个UI界面展示检测结果。系统的整体架构如下:
lua
复制编辑
+----------------+ +----------------+ +----------------+ +---------