1. 引言
随着城市公共交通的不断发展,公交车作为重要的出行工具,承载着大量乘客的出行需求。尤其在高峰时段,公交车的拥挤度直接影响到乘客的乘车体验以及公共交通的效率。因此,实时监测公交车内的拥挤程度对于公交调度、乘客管理以及城市交通的优化至关重要。
传统的拥挤度监测方法往往依赖人工统计或者基于地面传感器的技术,这些方法受限于数据获取的方式、实时性差以及成本高昂等问题。随着深度学习和计算机视觉技术的发展,基于摄像头的自动化拥挤度监测系统已经成为一种有效的解决方案。YOLOv5(You Only Look Once version 5)作为一种高效的目标检测模型,通过对公交车内的实时视频流进行处理,能够快速识别出车厢内的乘客,并根据乘客的数量来估算拥挤度。
本文将深入介绍如何结合YOLOv5模型与UI界面,实现公交车内的拥挤度分析系统,并给出详细的代码实现与参考数据集,以帮助读者理解如何将深度学习应用到实际的公交车拥挤度检测中。
2. 公交车拥挤度分析背景
公交车的拥挤度分析问题,通常涉及以下几个方面的内容:
- 乘客数量检测:基于实时视频流,检测公交车内的乘客数量。
- 拥挤程度计算:通过检测到的乘客数量与车厢的空间大小进行比对ÿ