📌 一、项目背景与现实意义
随着智能电网的发展,传统人工巡检电力设备的方式暴露出诸多弊端:
- 🧍♂️ 人工效率低,劳动强度大;
- 🏞 高空、高压环境下安全风险高;
- 🛰 难以实现大范围快速部署与即时反馈。
无人机搭载高清摄像头进行电力巡检已成为新趋势,但视频与图像仍需人工查看分析,亟需配合智能算法自动识别关键部件状态,降低人力消耗,提升检测效率。
因此,基于深度学习的电力缺陷检测系统具有广阔应用前景,尤其适合部署在无人机图像处理端。
🧠 二、核心技术:YOLOv5介绍
YOLOv5 是当前应用最广泛的实时目标检测算法之一,拥有以下优点:
- 🚀 实时性强,适合无人机快速检测场景
- 🔎 支持小目标识别(如绝缘子、螺栓等)
- ⚙️ 易于部署与迁移(PyTorch框架,支持导出ONNX、TensorRT)
- 📦 训练流程简单、工具链完善