基于YOLOv5的电力巡检无人机缺陷检测系统实现

📌 一、项目背景与现实意义

随着智能电网的发展,传统人工巡检电力设备的方式暴露出诸多弊端:

  • 🧍‍♂️ 人工效率低,劳动强度大;
  • 🏞 高空、高压环境下安全风险高;
  • 🛰 难以实现大范围快速部署与即时反馈。

无人机搭载高清摄像头进行电力巡检已成为新趋势,但视频与图像仍需人工查看分析,亟需配合智能算法自动识别关键部件状态,降低人力消耗,提升检测效率。

因此,基于深度学习的电力缺陷检测系统具有广阔应用前景,尤其适合部署在无人机图像处理端。


🧠 二、核心技术:YOLOv5介绍

YOLOv5 是当前应用最广泛的实时目标检测算法之一,拥有以下优点:

  • 🚀 实时性强,适合无人机快速检测场景
  • 🔎 支持小目标识别(如绝缘子、螺栓等)
  • ⚙️ 易于部署与迁移(PyTorch框架,支持导出ONNX、TensorRT)
  • 📦 训练流程简单、工具链完善

📂

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值