一、引言
随着人口老龄化问题的日益严重,老年人的跌倒事故成为了全球范围内一个严重的健康问题。在医院的病房中,老年人、术后患者或体弱患者的跌倒问题尤为突出,这不仅可能导致患者的二次伤害,还会增加医院的管理难度和医疗成本。因此,开发一个高效的跌倒检测系统,对于提高医院病房的安全性和管理水平具有重要意义。
近年来,深度学习和计算机视觉技术得到了广泛应用,其中基于YOLOv8的目标检测技术因其优异的实时性和精确性,成为了自动化跌倒检测的理想选择。本文将详细介绍如何构建一个基于YOLOv8模型的病房跌倒实时检测系统,通过摄像头实时监控病房,并在检测到跌倒事件时进行报警提示,结合UI界面展示实时监控结果,提升病房的安全管理能力。
二、系统架构与技术选型
2.1 系统架构
本病房跌倒实时检测系统的架构可以分为几个主要模块:
- 数据采集与预处理:通过摄像头实时采集病房内的视频流,并进行图像预处理,确保输入图像适应YOLOv8模型。
- YOLOv8模型训练与目标检测:使用YOLOv8模型进行跌倒事件的检测与识别。YOLOv8能够快速定位病房内的人员及跌倒事件,并进行实时反馈。
- 跌倒事件判定与报警:当检测到跌倒事件时,系统自动触发报警提示,提醒医护人员及时处理。
- UI界面展示:通过图形用户界面(GUI)实时展示检测结果,包括摄像头画面、跌倒事件发生的时间和位置。
- 数据统计与报告:对发生的跌倒事件进行统计分析,并生成报告,帮助医院进行安全管理。
2.2 技术选型
- YOLOv8:YOLOv8是当前目标检测领域中最为强大的实时检测模型之一,具有较高的精度和速度,适合用于实时的视频监控系统。
- PyQt6:PyQt6是一个Python GUI框架,用于构建图形用户界面,实时展示监控画面和检测结果。
- OpenCV:OpenCV是一个流行的计算机视觉库,提供了图像和视频流的处理功能,可用于视频采集、图像预处理、显示和保存。
- TensorFlow/Keras:用于训练YOLOv8模型,并为模型提供推理支持。
- Ultralytics YOLO库:Ultralytics提供了高效且易于使用的YOLOv8实现,简化了目标检测模型的训练与部署。
三、数据集准备
3.1 数据集选择
为确保YOLOv8模型能够准确识别跌倒事件,需要一个包含跌倒事件的标注数据集。以下是几个推荐的相关数据集:
- FDD (Fall Detection Dataset) :该数据集包含了不同的跌倒场景,包括从站立到跌倒的动作,适用于训练和测试跌倒检测模型。可以通过Kaggle Fall Detection Dataset获得。
- MHEALTH Dataset:该数据集包含了来自不同传感器的数据,其中包括跌倒和非跌倒的标签数据,适合进行人体动作分析与跌倒事件检测。可以在UCI Machine Learning Repository上找到。
- OpenPose Dataset:该数据集包含了人体姿势估计的标注数据,能够帮助模型更好地识别人体姿态和跌倒动作。
3.2 数据预处理与标注
数据集中的每一帧图像都需要进行标注。YOLOv8采用的标注格式包括目标的类别、中心坐标、宽度和高度。我们可以使用标注工具(如LabelImg)对每张图片进行标注,生成对应的txt文件。YOLO的标注格式如下:
php-template
复制编辑
<class_id> <x_center> <y_center> <width> <height>
3.3 数据集目录结构
数据集的目录结构应按照YOLO格式组织,包含训练集、验证集以及标签文件,示例如下:
bash
复制编辑
dataset/
├── images/
│ ├── train/
│ └── val/
├── labels/
│ ├── train/
│ └── val/
└── data.yaml
data.yaml
文件包含数据集的基本信息,例如类别数、训练集路径、验证集路径等,示例内容如下:
yaml
复制编辑
train: ./images/train
val: ./images/val
nc: 1 # 假设我们只有一个类别:跌倒
names:
0: 'Fall'
四、YOLOv8模型训练与优化
4.1 环境配置
首先,我们需要安装YOLOv8和其他相关依赖库:
bash
复制编辑
pip install ultralytics opencv-python pyqt6 tensorflow
4.2 模型训练
接下来,我们可以使用YOLOv8进行模型的训练。假设我们已经准备好了数据集并生成了标注文件。使用YOLOv8进行训练的代码如下:
python
复制编辑
from ultralytics import YOLO
# 加载预训练的YOLOv8模型
model = YOLO('yolov8n.pt')
# 开始训练
model.train(data='data.yaml', epochs=100, imgsz=640, batch=16)
data.yaml
:指定训练集和验证集的路径以及类别信息。epochs
:设置训练的轮数。imgsz
:设置输入图像的大小。batch
:设置每批次的训练样本数。
4.3 模型优化
在训练过程中,我们可以采取以下优化策略以提升模型的精度和速度:
- 数据增强:通过对图像进行旋转、翻转、裁剪等增强操作,增加训练数据的多样性,减少过拟合。
- 多尺度训练:使用不同尺寸的图像进行训练,提升模型的适应性。
- 调整学习率:根据训练过程中模型的收敛情况调整学习率,避免模型过拟合或欠拟合。
五、实时跌倒检测与报警
5.1 实时检测逻辑
我们可以通过OpenCV进行实时视频采集,并将每一帧图像传入YOLOv8模型进行检测。若模型检测到跌倒事件,系统会通过UI界面显示相关信息,并触发报警提示。
以下是实时检测的代码实现:
python
复制编辑
import cv2
from ultralytics import YOLO
# 加载训练好的YOLOv8模型
model = YOLO('best.pt')
# 打开摄像头
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
# 进行目标检测
results = model(frame)[0]
# 绘制检测结果
for data in results.boxes.data.tolist():
confidence = data[4]
if float(confidence) < 0.5:
continue
xmin, ymin, xmax, ymax = int(data[0]), int(data[1]), int(data[2]), int(data[3])
class_id = int(data[5])
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
cv2.putText(frame, f'{results.names[class_id]} {confidence:.2f}', (xmin, ymin - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 显示结果
cv2.imshow('Fall Detection', frame)
# 按'q'键退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
5.2 跌倒事件判定与报警
当检测到跌倒事件时,系统可以触发报警提示。以下是简单的报警逻辑:
python
复制编辑
import winsound
def alert():
frequency = 1000 # 设置频率
duration = 1000 # 设置持续时间
winsound.Beep(frequency, duration) # 发出警报声音
每当YOLOv8检测到“跌倒”类时,调用alert()
函数发出声音提醒。
六、UI界面开发
为了提高用户体验,系统需要一个图形用户界面(GUI)来展示实时的监控画面和跌倒事件信息。我们可以使用PyQt6构建UI界面,实时显示检测结果。
以下是一个简单的PyQt6 UI界面的代码实现:
python
复制编辑
import sys
from PyQt6.QtWidgets import QApplication, QWidget, QLabel, QPushButton, QVBoxLayout
from PyQt6.QtGui import QPixmap, QImage
from PyQt6.QtCore import QTimer
import cv2
from ultralytics import YOLO
class FallDetectionApp(QWidget):
def __init__(self):
super().__init__()
self.setWindowTitle('Fall Detection System')
self.image_label = QLabel(self)
self.start_button = QPushButton('Start Detection')
self.stop_button = QPushButton('Stop Detection')
self.start_button.clicked.connect(self.start_detection)
self.stop_button.clicked.connect(self.stop_detection)
layout = QVBoxLayout()
layout.addWidget(self.image_label)
layout.addWidget(self.start_button)
layout.addWidget(self.stop_button)
self.setLayout(layout)
self.cap = None
self.model = YOLO('best.pt')
self.timer = QTimer(self)
self.timer.timeout.connect(self.update_frame)
def start_detection(self):
self.cap = cv2.VideoCapture(0)
self.timer.start(30)
def stop_detection(self):
self.timer.stop()
if self.cap:
self.cap.release()
def update_frame(self):
ret, frame = self.cap.read()
if not ret:
return
results = self.model(frame)[0]
for data in results.boxes.data.tolist():
confidence = data[4]
if float(confidence) < 0.5:
continue
xmin, ymin, xmax, ymax = int(data[0]), int(data[1]), int(data[2]), int(data[3])
class_id = int(data[5])
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
cv2.putText(frame, f'{results.names[class_id]} {confidence:.2f}', (xmin, ymin - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
qt_image = QImage(frame_rgb.data, frame_rgb.shape[1], frame_rgb.shape[0],
frame_rgb.strides[0], QImage.Format_RGB888)
self.image_label.setPixmap(QPixmap.fromImage(qt_image))
if __name__ == '__main__':
app = QApplication(sys.argv)
window = FallDetectionApp()
window.show()
sys.exit(app.exec())
七、总结与展望
本文介绍了基于YOLOv8的病房跌倒实时检测系统的设计与实现。通过实时视频监控与目标检测技术,系统能够自动识别并报警,极大提升了病房的安全管理。随着深度学习技术的不断发展,未来该系统可以进一步优化,提高识别精度和响应速度,拓展更多应用场景。