项目背景与目标
随着全球环保意识的提高,垃圾分类已经成为许多城市和校园的一项重要任务。垃圾分类不仅有助于资源的回收和再利用,还能减少垃圾对环境的污染。然而,垃圾分类的执行和监督工作依赖于人工管理,这在实际中存在一定的困难。尤其是在大型校园中,垃圾的分类不仅繁琐,而且容易出现误分类的情况。因此,如何通过智能化手段来提升垃圾分类的准确性与效率,成为了当前环境管理中的一个重要课题。
深度学习,尤其是目标检测技术,能够在实时视频流中识别和分类各种物体,正好适用于这一场景。YOLOv8(You Only Look Once)作为一种高效的目标检测算法,在多种物体检测中表现出色,具备极高的实时性和准确性。结合YOLOv8与UI界面设计,我们可以开发出一个校园垃圾分类督导系统,该系统不仅能够自动识别垃圾种类,还能在UI界面上展示垃圾分类的情况,并为分类不准确的行为提供实时提醒。
项目目标
本项目旨在设计并实现一个基于YOLOv8与UI界面的校园垃圾分类督导系统,系统能够通过摄像头实时监控校园中的垃圾桶,对垃圾进行自动识别与分类。系统通过UI界面显示垃圾的种类、位置,并能够为分类错误的垃圾提供反馈。具体目标如下:
- 垃圾识别与分类:通过YOLOv8模型自动识别不同种类