1. 引言
在紧急情况下,应急通道的畅通是确保快速疏散、保障生命安全的关键因素。然而,在一些建筑物和公共场所中,应急通道经常被不当占用,导致紧急情况下无法及时使用,严重影响人员的疏散效率。因此,开发一种高效、自动化的应急通道占用监测系统至关重要。
本博客将介绍如何基于YOLOv8模型设计和实现一个应急通道占用监测系统。通过结合深度学习目标检测技术(YOLOv8)与UI界面,该系统能够实时监测应急通道的占用情况,并通过界面及时反馈报警信息。通过详细的数据集选择、模型训练、代码实现等内容,本博客为您提供完整的系统搭建过程,帮助您构建高效的监测系统。
2. 系统需求与挑战
2.1 系统需求
应急通道占用监测系统的核心目标是实时检测和识别应急通道是否被占用。系统主要功能包括:
- 实时监测:监控应急通道是否有障碍物或人群占用。
- 多目标检测:能够同时检测多个占用的对象(如物品或人员),并进行准确的定位。
- 报警机制:当系统检测到占用情况时,能