1. 引言
地铁系统作为城市交通的重要组成部分,其安全性至关重要。地铁内的拥挤和复杂环境为安保工作带来了挑战。近年来,随着人工智能技术的快速发展,目标检测和深度学习技术在地铁安全领域得到了广泛应用。尤其是通过使用YOLO(You Only Look Once)系列目标检测模型,能够高效、实时地检测地铁车厢内是否存在危险物品,如刀具、爆炸物、液体等。
本博客将介绍如何利用YOLOv8模型和UI界面设计,开发一个地铁危险物品检测系统。该系统能够实时检测地铁车厢中的危险物品,并通过UI展示检测结果,提醒工作人员采取措施。我们将详细讨论如何选择数据集、训练YOLOv8模型、设计UI界面,以及如何将这些技术集成到实际的地铁安防监控系统中。
2. 系统目标与挑战
2.1 系统目标
本系统的目标是通过YOLOv8实现对地铁车厢中的危险物品的实时检测。系统主要功能包括:
- 危险物品检测:实时检测地铁车厢中的危险物品,如刀具、枪支、爆炸物、液体等。
- 实时视频监控与展示:通过UI界面展示实时视频流,检测到危险物品时进行框选和标记。
- 报警系