引言
自动驾驶技术的飞速发展让许多人对未来的出行方式充满了期待。作为自动驾驶系统的核心组件之一,障碍物检测扮演着至关重要的角色。障碍物检测能够帮助自动驾驶车辆实时识别前方的行人、车辆、交通标志以及其他潜在的危险物体,从而确保行车安全。
近年来,深度学习在计算机视觉领域取得了显著的突破,尤其是在目标检测任务上。YOLO(You Only Look Once)系列算法作为一种流行的目标检测框架,因其高效的实时性和优秀的性能,在自动驾驶障碍物检测中得到了广泛应用。本文将深入探讨如何使用YOLOv8进行自动驾驶障碍物检测,并实现一个完整的UI界面来展示检测结果,同时推荐适合的公开数据集。
1. 自动驾驶障碍物检测概述
1.1 自动驾驶的背景
自动驾驶技术利用车辆中的传感器(如摄像头、雷达、激光雷达等)收集周围环境的信息,并通过计算机算法进行分析和处理,从而做出驾驶决策。障碍物检测是自动驾驶系统中至关重要的一部分,它能实时识别出前方可能影响行车安全的物体,并做出相应反应。
1.2 目标检测的定义
目标检测是计算机视觉中的一项基本任务,旨在识别图像或视频中的目标并给出其精确位置。对于自动驾驶而言,目标检测不仅仅是识别物体,还需要根据检测到的位置和类别信息&#