一、引言
古生物学是研究地球历史上曾经存在过的生物的学科,其中化石是研究古生物的最重要依据。随着考古学家的持续挖掘和科研的深入,大量的化石碎片被发现。然而,化石的分类工作往往依赖于专业知识和大量的人工工作,这不仅耗费大量时间,而且对专家的依赖程度较高。为了提高化石分类的效率和准确性,人工智能,特别是深度学习技术,已被逐渐引入到这一领域。
在本博客中,我们将深入探讨如何使用YOLOv10模型结合UI界面实现古生物化石碎片的自动分类识别。通过该系统,可以自动检测并分类化石碎片,极大地提高古生物化石的分类效率,助力古生物学研究的进步。
二、项目目标与背景
2.1 古生物化石的重要性
古生物化石是研究地球历史上曾经存在的生物的关键材料。通过对化石的研究,科学家们能够了解地球上物种的进化、灭绝及其与环境的相互作用。然而,化石碎片的种类繁多且形态各异,分类任务的复杂性非常高,传统的人工分类工作不仅非常繁重,而且容易出现误差。
2.2 项目目标
本项目旨在基于YOLOv10目标检测算法,结合一个友好的UI界面,开发一个自动化的古生物化石碎片分类系统。通过该系统,用户可以上传含有化石碎片的图像,系统自动识别图像中的化石碎片,