引言
随着全球对可再生能源需求的持续增长,太阳能作为一种清洁、可持续的能源形式正在全球范围迅速发展。太阳能农场(Solar Farm)是太阳能光伏发电技术的大规模应用场景,其规划选址直接影响建设成本、发电效率以及维护难度。
传统的太阳能选址依赖于GIS数据和人工踏勘,存在成本高、效率低的问题。随着无人机(UAV)航拍技术与深度学习的发展,我们可以通过自动化图像识别手段,对大量场地进行初步适用性筛选,极大地提高选址效率与科学性。
本项目结合YOLOv10目标检测算法、PyQt5用户界面及高空航拍数据,设计并实现一套完整的太阳能农场场地适用性评估系统,可自动识别地面障碍(如树木、建筑、水体、坡地等),为工程师提供初步的可视化辅助决策依据。
1. 项目背景与目标
1.1 为什么用YOLOv10
YOLOv10相较前代有以下特点:
- ⚡ 速度快:适合无人机边缘端部署,实时性强;
- 🎯 检测精度高:在复杂地形中识别树木、房屋、坡地等效果显著;
- 🧠 支持