基于YOLOv10的老旧照片修复与模糊图像目标自动标注系统设计与实现

一、项目概述

在图像修复与物体检测的交叉领域中,如何对历史老旧模糊照片进行高效自动标注成为计算机视觉研究的重点课题之一。本文提出一种基于YOLOv10目标检测算法,结合图像增强与模糊图像特征提取技术的老照片目标自动标注系统,并提供可视化UI界面完整工程代码,支持批量处理老旧模糊图片,自动完成目标检测与修复辅助任务。


二、项目技术架构图

plaintext
复制编辑
          ┌────────────┐
          │ 老旧图像  │
          └────┬───────┘
               ↓
      ┌────────────────┐
      │ 图像增强模块   │ ← 图像去噪、锐化、超分辨率
      └────┬───────────┘
           ↓
   ┌────────────────────┐
   │ YOLOv10目标检测模块│ ← 加载预训练模型/微调模型
   └────┬────────────────┘
        ↓
   ┌────────────────────┐
   │ UI可视化交互模块   │ ← PyQt5显示图片与标注结果
   └────────┬────────────┘
            ↓
      ┌─────────
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值