基于YOLOv8的X光异物检测:识别患者体内的手术遗留物

1. 背景介绍

医疗X光影像是诊断患者内部状况的重要手段。手术过程中若发生异物遗留,比如纱布、手术钳或导线,可能导致患者术后并发症,甚至威胁生命安全。传统的医生人工检查存在一定漏检风险,自动化X光异物检测系统能够辅助医生准确、快速定位体内异物,提升医疗安全性和效率。

基于深度学习的目标检测技术,尤其是YOLO系列模型,以其高精度和高效性广泛应用于医学影像分析。YOLOv8作为最新一代YOLO版本,兼具实时性能与检测准确度,十分适合本项目需求。


2. 项目意义与挑战

意义

  • 降低异物遗留风险,保障患者安全
  • 辅助医生快速准确诊断,节省时间成本
  • 推动医疗影像智能化,促进临床自动化发展

挑战

  • 异物种类多样,形态复杂,易与人体骨骼组织混淆
  • X光图像质量不一,存在噪声和遮挡
  • 标注数据稀缺且难以获取,增加模型训练难度
  • 医学图像隐私保护要求严格,数据合规使用受限

3. 技术选型与整体架构

本项目采用YOLOv8作为目标检测模型核心,基于PyTorch实现&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值