1. 背景介绍
医疗X光影像是诊断患者内部状况的重要手段。手术过程中若发生异物遗留,比如纱布、手术钳或导线,可能导致患者术后并发症,甚至威胁生命安全。传统的医生人工检查存在一定漏检风险,自动化X光异物检测系统能够辅助医生准确、快速定位体内异物,提升医疗安全性和效率。
基于深度学习的目标检测技术,尤其是YOLO系列模型,以其高精度和高效性广泛应用于医学影像分析。YOLOv8作为最新一代YOLO版本,兼具实时性能与检测准确度,十分适合本项目需求。
2. 项目意义与挑战
意义
- 降低异物遗留风险,保障患者安全
- 辅助医生快速准确诊断,节省时间成本
- 推动医疗影像智能化,促进临床自动化发展
挑战
- 异物种类多样,形态复杂,易与人体骨骼组织混淆
- X光图像质量不一,存在噪声和遮挡
- 标注数据稀缺且难以获取,增加模型训练难度
- 医学图像隐私保护要求严格,数据合规使用受限
3. 技术选型与整体架构
本项目采用YOLOv8作为目标检测模型核心,基于PyTorch实现&#x