1. 项目背景与研究意义
皮肤病是全球范围内常见的疾病,种类繁多,症状表现复杂多样。准确快速地识别皮肤病类型对及时治疗和降低医疗成本至关重要。传统诊断依赖专业皮肤科医生的经验,主观性较强,且难以普及到基层医疗机构。
深度学习,尤其是基于视觉的神经网络模型,近年来在医学图像诊断领域表现出强大能力。借助YOLOv8目标检测与分类网络,结合易用的UI界面,我们可开发出一款方便快捷的皮肤病初步诊断工具,辅助医生和患者进行早期筛查。
2. 皮肤病分类面临的挑战
- 病变类型多样:如湿疹、银屑病、白癜风、痤疮、皮肤癌等。
- 病变表现复杂:形态、颜色、大小差异显著,易混淆。
- 图像质量参差:拍摄设备、光照、焦距差异大。
- 标注难度高:需要皮肤科专家准确标注,数据稀缺。
3. 技术路线与整体架构设计
本项目采用YOLOv8模型,结合迁移学习,实现多类别皮肤病图像检测与分类。数据预处理与增强提升模型泛化能力。前端UI采用Python Tkinter开发,支持图像上传、实时检测及结果展示。
整