1. 项目背景及意义
医疗废物中包含大量危险废物如针头、输液管、纱布等,若处理不当,会造成感染风险、环境污染及安全隐患。传统的人工分类依赖经验,效率低且易出错。基于深度学习的自动分类系统,可以实现医疗废物的快速准确识别,辅助垃圾分类,保障医疗安全与环保。
通过构建基于YOLOv8的危险医疗废物实时分类系统,实现对针头、纱布等类别的精确识别,并结合简洁易用的UI界面,推动医疗机构废物管理智能化升级。
2. 医疗废物分类的技术挑战
- 医疗废物种类多样,形态复杂,且有部分外观相似。
- 物品形态多变(针头透明、纱布形状不规则)。
- 环境光线、拍摄角度差异大。
- 需要实时检测,满足现场分类需求。
- 数据标注难度大,且训练样本稀缺。
3. 系统设计与技术路线
3.1 技术路线
- 采集医疗废物图像并进行标注
- 数据预处理及增强
- 基于YOLOv8预训练模型进行微调训练
- 评估模型性能并优化
- 设计基于Python的实时检测UI界面
- 集成系统并进行测试验证