1. 背景与意义
在神经科学、生物医学和药理学等领域,实验动物行为分析是研究动物神经系统功能、药物效果、疾病模型等的基础。尤其是对小鼠的行为轨迹追踪,能够帮助科研人员深入理解动物的运动模式、焦虑程度、学习记忆能力等。
传统的行为追踪方法往往依赖于手动观察或基于标记的跟踪,存在费时费力且主观误差大等缺点。随着计算机视觉和深度学习技术的发展,自动化、精准且实时的行为追踪系统逐渐成为主流。
本文将介绍如何利用目前先进的目标检测算法YOLOv8,结合简易的UI界面,完成小鼠行为轨迹的实时识别和可视化展示,并附上训练代码及参考数据集,供科研人员和开发者快速上手。
2. 实验动物行为追踪技术综述
2.1 传统方法
- 手动标记:通过录像手动跟踪动物位置,耗时长且不精确。
- 标记法:在动物身上粘贴颜色点或标签,但影响动物自然行为。
2.2 计算机视觉方法
- 背景差分法:基于视频背景建模实现运动目标提取,受光照影响大。
- 传统目标检测算法:如Haar特征+级联分类器,准