1. 项目背景
随着制药工业的高速发展,药品包装的质量检测显得尤为重要。药片缺失、包装破损不仅影响药品的安全性,还会导致客户投诉和经济损失。传统的人工检验效率低,误判率高,迫切需要自动化、智能化的检测系统。
本项目利用深度学习中的目标检测技术,基于YOLOv8模型,实现对药品包装中药片缺失与包装破损的实时自动检测,并结合友好的图形用户界面,方便现场操作和管理。
2. 相关技术介绍
2.1 目标检测技术概述
目标检测是计算机视觉领域重要任务,旨在识别图像中所有目标的位置(用边界框表示)及其类别。当前主流方法主要有两类:
- 两阶段检测器(如Faster R-CNN):精度高但速度慢
- 单阶段检测器(如YOLO系列、SSD):速度快,适合实时应用
2.2 YOLOv8简介
YOLOv8是Ultralytics推出的最新一代YOLO模型,结合Transformer和CNN优势,提升检测精度与速度,支持多种应用场景,易用且文档丰富,广受社区欢迎。